If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+50x=0
a = 12; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·12·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*12}=\frac{-100}{24} =-4+1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*12}=\frac{0}{24} =0 $
| -z²=-2z-35 | | 4a+2)-2a=10+2(a-3) | | 12+x=9-5 | | x=-4+5 | | 6/x=10/30 | | 4n-3=-13 | | 4z-z+3=18 | | x=-1(-4)+5 | | 3(x+0.3)=1.9 | | 4n-3=1 | | 10x^2-42x+11=0 | | x=4(3)-1 | | 7^(3x+1)=98 | | 4p-p-p-p-2p= | | x=4(1)-1 | | x=4(0)-1 | | x=4(-1)-1 | | 0.10x+0.15(50–x)=0.12(50)= | | x=-5(1)+4 | | 1/4=2^x | | x=-5(0)+4 | | x=-5(-3)+4 | | y/4-8=-10 | | 10x+5=8x+60 | | x=0-5 | | 1x+4=8x+5 | | x=-5-5 | | 2,5x+5=19-2x | | 4-(3x-9)=10 | | x=5(3)+1 | | x=5(0)+1 | | x=5(-1)+1 |